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Abstract

In the supplementary material, we delve deeper into the workings and advantages of CFNet, which we introduced in the
main document as a novel solution for the natural fusion of fine-grained color enhancement. Building upon the main paper’s
focus, we provide a detailed overview of how CFNet stands out in the realm of digital art post-processing. We accentuate
the edge CFNet has over existing methods discussed in the main document, such as image harmonization, color transfer, and
image inpainting techniques. The ablation study section, complementary to our main findings, offers an in-depth exploration
of our network design decisions, the impact of the refinement module’s size on pivotal metrics, and a thorough evaluation
of different mask generation methodologies. Our user study, aligning with the main paper’s assertion of CFNet as a novel
tool, affirms its potential in color fusion. We supplement the main document’s experiments with visual examples, showcasing
CFNet’s unparalleled performance in single and multi-object color fusion tasks, thus emphasizing its proficiency in achieving
impeccable and aesthetically pleasing color blends.
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1. Color Fusion and the Practical Applications of CFNet
In this section, we compellingly showcase CFNet’s practical utility and superiority in real-world applications.

1.1. Color Fusion: A Vital yet Underexplored Task in Fine-grained Color Enhancement

The domain of digital art post-processing has witnessed growing interest in fine-grained color enhancement [9]. Yet,
within computer vision and deep learning, this niche remains under-represented. Afifi et al. [1], for instance, delved into
localized color adjustments, applying color transfer between an image and its semantic segmentation. Notably, even such
methodologies face a persistent challenge: direct composition of region-specific color alterations introduces spatial inconsis-
tencies, particularly pronounced at boundary regions.

Addressing seamless color fusion is not just pivotal but an uncharted territory within fine-grained color enhancement.
With our novel approach, CFNet, we aim to redress these spatial irregularities, heralding a paradigm shift in fine-grained
color editing for computer vision research.

1.2. CFNet: Pioneering Color Fusion beyond Existing Method Limitations
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Figure 1. A comparative visual analysis of color fusion techniques across three related domains: image harmonization, color transfer, and
image inpainting. The figure juxtaposes results from leading methods—Harmonizer, S2CRNet, two variants of Color Matcher (MKL and
HM-MVGD-HM), CoordFill, and ZITS—against our CFNet. Note the discrepancies in boundary blending, color consistency, and texture
preservation, with CFNet exemplifying superior performance in all aspects.

Due to the lack of research specifically focused on the problem of color fusion, we made a comparative analysis with
methods from three related areas: image harmonization, color transfer, and image inpainting. For each category, we select two
state-of-the-arts methods and compare their visual performance with CFNet. In the image harmonization category, we choose
Harmonizer [6] and S2CRNet [7]. We use two kinds of Color Matcher [5] methods: Monge-Kantorovich-Linearization
(MKL) and Multi-Variate Gaussian Distributions in combination with Histogram Matching (HM-MVGD-HM). For image
inpainting techniques, we compared our method with CoordFill [8] and ZITS [2].

To effectively address the color fusion challenge, an ideal algorithm should seamlessly blend boundaries, maintain the
original color in non-boundary areas, and preserve texture. Figure 1 highlights the shortcomings of existing methods: image
harmonization techniques produce inconsistent color blends at edges, while the Color Matcher leads to marked color dis-
crepancies. Image inpainting alters texture noticeably—for instance, shortening the cat’s tail. In stark contrast, our CFNet
proficiently satisfies all these prerequisites, marking it as a superior solution.
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Figure 2. Comparison of CFNet with Traditional Methods: While traditional approaches demand extensive manual adjustments using over
20 controls for mask refinement, CFNet automates this process. Using edge detection (e.g., Canny), it identifies and rectifies potential
inconsistencies, delivering a seamless region-specific color edit.

1.3. Seamless Integration of CFNet into Post-production: Eradicating Manual Edge Refinement and Saving
Significant Time

CFNet can be easily integrated into current pipelines. In conventional approaches for region-specific color enhancement,
refining a coarse mask requires intricate manual adjustments, employing over 20 controls for color and geometric attributes,
followed by meticulous visual inspections. As shown in Figure 2, the proposed CFNet radically transforms this workflow by
automating edge refinement for these tasks. With CFNet, upon receiving a coarse object mask, potential regions prone to spa-
tial color inconsistencies are swiftly detected using renowned edge detection techniques, such as Canny. Subsequently, CFNet
processes the mask and its direct composition, delivering a region-specific color edit that’s both consistent and seamless.

2. Demo Application of CFNet for Fine-grained Color Enhancement
As described in the main paper, we have developed a demo application of CFNet showcasing its capability of empowering

fine-grained color editing system.

2.1. Method

We present a text-driven image enhancement method that seamlessly combines style and memory colors, facilitating natu-
ral fusion of regional adjustments. This approach facilitates both global and fine-grained color enhancement, enabling effec-
tive establishment of desired aesthetics while preserving object-specific memory colors. Additionally, it capably translates
user preferences expressed in text into color enhancement operations, creating an efficient text-to-enhancement mapping.

The demo application comprises three core components: the Text2LUT module, the Semantic-Aware Memory Color
module, and ChromaFusionNet (CFNet). The Text2LUT module interprets user input and translates it into a corresponding
LUT capable of executing the requested operations. This presents a challenge, given the inherent ambiguity of natural
language. However, we construct this module based on the premise of a shared understanding of LUTs and related natural
language descriptions. We carefully curate a dataset and design a ViT-based [4] model capable of effectively handling
3DLUTs, enabling the Text2LUT module to function effectively. The Memory Color module uses the textual input to
generate natural colors that persist in a high-quality dataset. We have gathered a large-scale dataset comprised of 1,245,469
high-aesthetic-quality images for this purpose. The ChromaFusionNet can adeptly combine all adjustments, avoiding the
artifacts commonly associated with regional adjustments. We innovatively formulate the region fusion as a color inpainting
problem and designed a neural network that trained on ImageNet [3] to achieve natural blending and good generalization.
The combined operation of these three modules produces a superior end result.
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Figure 3. User Interface of the Text-based Fine-grained Color Enhancement: Left sidebar facilitates image uploading. Below the image
review, main area provides input boxes for global color grading and object-specific color adjustments. The demonstrated image combines
vintage grading with object-specific tones (grass:green, dog:light yellow). CFNet seamlessly integrates regional edits, avoiding spatial
inconsistencies or color deviations.

2.2. User Interface

In Figure 3, the UI comprises a left sidebar for image uploads and a main area on the right for image preview and text-
based color adjustments. This area provides two text boxes for global color grading and object-specific adjustments. An
illustrated example applies a vintage global grade, complemented by object-specific tones (‘grass:green, dog:light yellow‘).
CFNet adeptly fuses regional color edits, maintaining spatial consistency and avoiding color deviations even in boundary
regions.

2.3. Example Outputs

We present visual results demonstrating the versatility and robustness of the demo application. As shown in Fig. 4, our text-
driven image enhancement system exhibits exceptional capacity in producing diverse and personalized color enhancements on
the same image using varying text descriptions, showcasing its flexibility. Further, we illustrate the consistency of the system
in modifying similar content across different images, utilizing the same text input (Fig. 5). This consistency is indicative
of the system’s robustness in handling a variety of input scenarios, demonstrating its potential for practical applications.
Multiple images, depicting the results of our method in comparison to state-of-the-art solutions, illustrate the superiority of
our approach in maintaining an effective balance of style color and memory color, while simultaneously avoiding artifacts.

3. Experiment Configuration and Computational Efficiency
3.1. Experiment Configuration Details

3.1.1 Training Hardware and Duration

Our model was trained on 4 Tesla V100 GPUs. The training process spanned approximately two days.
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Figure 4. Demonstration of our system’s ability to produce diverse and personalized color enhancement results using different text descrip-
tions on the same image.
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Figure 5. Demonstration of system consistency in enhancing similar content across different images using the same text description.

3.1.2 Data Preparation

• Image Dataset: We utilized the ImageNet dataset, resizing images to 224x224 pixels. This resizing step is crucial for
standardizing input dimensions and ensuring computational efficiency.

• Segmentation and Masking: Using Detectron2, we performed panoptic segmentation on the dataset. To generate
input masks, we randomly selected 1-3 objects per image. The edges of these objects were dilated with kernel sizes
ranging from 3 to 5 and dilation rates between 2 and 32.

3.1.3 Training Settings

• Epochs and Batch Size: The training was conducted over 1,000,000 steps with a batch size of 16. This batch size was
chosen to balance between computational efficiency and the need for stochasticity in gradient descent.

• Optimizers: We employed the AdamW optimizer for both generator and discriminator networks. The learning rate
for the generator was set at 5e-4 and 1e-5 for the discriminator, with beta values of [0.9, 0.95] for both. AdamW was
chosen for its effectiveness in handling sparse gradients and adaptive learning rates.

• Scheduler: A Cosine Annealing Restart Learning Rate scheduler was used, with an θmin of 1e-6. This scheduler helps
in avoiding local minima and ensures better convergence by periodically resetting the learning rate.

3.2. Computational Efficiency

Our benchmark results confirm that CFNet, tested on varying hardware, exhibits commendable computational efficiency.
On an NVIDIA V100, CFNet operates at 13.07 FPS, while its coarse module reaches 50.25 FPS; on an NVIDIA RTX 2080Ti,
these figures are 11 FPS and 45.66 FPS, respectively. The output of the coarse module, which exceeds the real-time preview
standard of 25 FPS, offering more than twice the needed speed for previews. For output rendering, CFNet functions at half
the real-time rate, which is acceptable. We have yet to pursue engineering optimizations, indicating substantial potential for
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further efficiency enhancements. In essence, CFNet strikes an effective trade-off between speed and performance, aligning it
well with practical deployment scenarios.

4. More Ablations
To support the decisions in network design, we have conducted a set of ablations. In these ablations, experiment settings

and metrics are the same as reported in the main submission.

4.1. Size of Network Input and Output

Table 1. Ablation studies for reconstruction performance on ImageNet test set and COCO test set. We conduct experiments on the CFNet
with refinement module of varying sizes on PSNR, B-PSNR, SSIM, and ∆E metrics.

Size
ImageNet COCO Time

PSNR ↑ B-PSNR ↑ SSIM ↑ ∆E ↓ PSNR ↑ B-PSNR ↑ SSIM ↑ ∆E ↓ FPS ↑
224 × 224 34.96 26.57 0.97 0.65 36.12 32.05 0.97 0.73 12.91
448 × 448 35.22 25.95 0.97 0.62 37.03 31.49 0.97 0.63 4.11

A comprehensive ablation study was conducted to gauge the reconstruction performance of the CFNet on two prominent
test sets: ImageNet and COCO. The study focused on discerning the influence of the refinement module’s size on key metrics:
PSNR, B-PSNR, SSIM, and ∆E. Instead of evaluating the whole image, the B-PSNR specifically measures the PSNR of
the boundary areas to be filled, providing a more targeted assessment for color fusion. The results of these experiments, as
showcased in Table 1, are discussed below.

• Impact of Refinement Module Size:

– For both ImageNet and COCO datasets, increasing the refinement module’s size from 224x224 to 448x448 led
to a discernible improvement in PSNR (from 34.96 to 35.22 for ImageNet and from 36.12 to 37.03 for COCO).
This suggests that a larger refinement module size aids in obtaining a more precise image reconstruction.

– However, while the B-PSNR value for the COCO dataset decreased marginally with the larger size, the ImageNet
dataset exhibited a minor reduction. Clearly, increasing the input size doesn’t necessarily enhance the color fusion
capability.

• Consistency in SSIM:

– Remarkably, the SSIM value, a metric which indicates the structural similarity between the tested image and
the reference, remained consistent at 0.97 for both sizes and datasets. This highlights that irrespective of the
refinement module’s size, the structural integrity of the reconstructed images is preserved.

• Color Accuracy:

– The ∆E values, indicative of the color difference between the reconstructed and reference images, improved
slightly with the increase in refinement module size. A decrease from 0.65 to 0.62 for ImageNet and from 0.73
to 0.63 for COCO emphasizes that the 448x448 size achieves better color accuracy in the reconstructions.

• Processing Speed:

– A critical trade-off was observed in the FPS (frames per second) metric, which measures the processing speed.
While the 224x224 size achieved a superior speed at 12.91 FPS, increasing the size to 448x448 resulted in
a significant reduction to 4.11 FPS. This highlights that while the larger refinement module offers qualitative
advantages, it does so at the cost of computational speed.

In conclusion, our ablation study on CFNet underscores the importance of choosing the appropriate module size based on
the specific requirements of the task at hand. For applications demanding higher image quality, especially in terms of PSNR
and color accuracy, the 448×448 size appears favorable. However, when processing speed is paramount, the 224×224 size
would be the more prudent choice.
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Table 2. Efficacy of Various Mask Generation Schemes. The table juxtaposes the performance metrics of different mask generation
schemes, ranging from selective point densities to utilizing the full available image points. The results compellingly illustrate that denser
point configurations lead to superior performance, thereby underscoring the robustness of our approach that leverages the entirety of image
points for mask generation.

Point Number ImageNet COCO
PSNR↑ B-PSNR↑ SSIM↑ ∆E↓ PSNR↑ B-PSNR↑ SSIM↑ ∆E↓

14×14 29.93 24.23 0.94 1.29 31.25 29.57 0.95 1.23
28×28 31.81 25.10 0.95 1.02 33.29 30.95 0.95 1.01
56×56 32.18 25.14 0.95 0.99 33.61 30.75 0.95 0.99

Full 34.96 26.57 0.97 0.65 36.12 32.05 0.97 0.73

4.2. Training Mask Generation Schemes

We conducted an analysis to evaluate the performance of CFNet using different mask generation schemes, especially on
two leading datasets: ImageNet and COCO. The core aim was to comprehend how the number of image points used for
mask generation impacts essential metrics like PSNR, B-PSNR, SSIM, and ∆E. Notably, the B-PSNR provides a unique
perspective by specifically evaluating the PSNR in the boundary regions requiring fusion. The findings from this analysis,
presented in Table 2, are elaborated below.

• Role of Image Points in Performance:

– A trend is evident across both ImageNet and COCO datasets: as the point density for mask generation increases,
so does the PSNR value. Specifically, transitioning from a 14x14 to a Full scheme led to substantial improvements
in PSNR (from 29.93 to 34.96 for ImageNet and from 31.25 to 36.12 for COCO). This highlights that employing
a denser set of image points results in more accurate reconstructions.

– B-PSNR values, which focus on boundary areas, also depict a consistent improvement with increasing point
density, further advocating for the use of a denser point scheme.

• Texture Integrity with SSIM:

– The SSIM values, which determine the structural consistency between the test and reference images, stay resilient
across different point schemes, consistently hovering around 0.95-0.97. This suggests that the underlying texture
remains consistent, regardless of the point density used in mask generation.

• Color Fidelity and ∆E:

– Observing the ∆E values, which quantify the color difference between test and reference images, it’s clear that
a Full mask generation scheme provides the most color-accurate results, with the lowest ∆E values across both
datasets.

To sum up, this analysis strongly endorses our approach of utilizing all available image points for mask generation in
CFNet. It not only enhances the overall image quality in terms of PSNR but also ensures optimum color accuracy and texture
consistency.

4.3. Network Structure

Our ablation study, as summarized in table 3, scrutinizes the performances of CNN and ViT models. While CNN excels in
detail capturing, ViT shines in addressing long-range dependencies. Notably, both present comparable results on ImageNet
and COCO, with a consistent SSIM of 0.97.

The combination of architectures reveals intriguing insights. Specifically, the Coarse (ViT) followed by the Refine (CNN)
sequence outperforms other configurations, registering the highest PSNR and B-PSNR values. This superior performance can
be attributed to ViT establishing a broad structure, subsequently refined by the CNN for detailed representations, ensuring
minimal ∆E metrics.

Conclusively, the juxtaposition of these architectures amplifies their inherent strengths, emphasizing the efficacy of com-
bining neural structures for enhanced results.
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Table 3. Network Structure Ablation. By harnessing the detailed prowess of CNNs and the long-range strengths of ViT, our ablation
highlights the superiority of combining both. Notably, positioning the CNN-based refinement module after the ViT-based coarse module
emerges as the optimal configuration.

Network Structure ImageNet COCO
PSNR ↑ B-PSNR ↑ SSIM ↑ ∆E ↓ PSNR ↑ B-PSNR ↑ SSIM ↑ ∆E ↓

Refine (CNN) 34.57 25.76 0.97 0.66 35.88 31.29 0.97 0.73
Coarse (ViT) 34.40 25.61 0.97 0.68 35.67 30.75 0.97 0.74
Refine (CNN) + Coarse (ViT) 34.64 25.81 0.97 0.65 36.06 31.58 0.97 0.72
Coarse (ViT) + Refine (CNN) 34.96 26.57 0.97 0.65 36.12 32.05 0.97 0.73

Table 4. Performance Comparison of Image Harmonization Methods on ImageNet and COCO: This table contrasts CFNet with established
methods like Harmonizer and S2CRNet, including their lightness-constant versions (denoted as -L). Adjustments were made using the
iHarmony4 dataset for consistent brightness. CFNet consistently outperforms others.

Dataset: ImageNet W1 ↓ IP@0.85↓ IP@0.90↓ IP@0.9651↓
Harmonizer 5.44 8.38 7.86 6.50
Harmonizer-L 4.82 7.88 7.55 6.68
S2CRNet 6.69 8.30 7.78 6.46
S2CRNet-L 6.71 8.09 7.73 6.83
CFNet (Ours) 1.66 5.73 5.28 4.14
Dataset: COCO W1 ↓ IP@0.85↓ IP@0.90↓ IP@0.9651↓
Harmonizer 12.52 3.24 3.03 2.46
Harmonizer-L 10.91 3.07 2.93 2.53
S2CRNet 20.88 3.71 3.47 2.85
S2CRNet-L 21.26 3.52 3.37 2.95
CFNet (Ours) 0.21 2.63 2.34 1.70

5. Comparison with Existing Algorithms in the Fixed L Channel Setting
Modification of existing methods to preserve brightness, particularly in inpainting, style transfer, and color matching,

is fraught with substantial challenges or remains impractical. Even enhanced harmonization approaches that preserve the
brightness channel still fall short of CFNet’s performance. CFNet contrasts with inpainting that alters the lightness channel,
compromising texture integrity despite successful fusions. Although style transfer involves intricate content and style dis-
entanglement, color and lightness are intertwined; disentangling these elements presents a promising yet untapped research
challenge. Traditional color matching, based on histogram matching in RGB space, will produce images with seriously de-
viated color when extended to spaces like Lab or HSV that preserve lightness due to properties of those color spaces. In
summary, the revision of these methods to preserve brightness is either infeasible or a complex challenge.

As for enhanced harmonization methods, we’ve preprocessed the training data in iHarmony4 dataset for unchanged bright-
ness to retrain those models and made the modification that incorporating the input’s lightness directly into the output to
ensure a valid comparison. As shown in Table 4, the results are clear: harmonization methods, when adjusted for constant
brightness (Harmonizer-L and S2CRNet-L), display marginal improvements or maintain performance, as evidenced by the
table below. CFNet outperforms all benchmarks, affirming its superiority even over those adjusted for constant lightness.

6. Additional User Interview for CFNet with a Professional Colorist
6.1. Overview

A comprehensive user study was conducted with an experienced colorist to evaluate our demo application based on
CFNet for fine-grained color enhancement. The study aimed to gather insights regarding the user experience, performance,
and overall effectiveness of the application and the underlying CFNet.

6.2. Text-based Fine-grained Color Enhancement Application Evaluation Results

The participant successfully completed all tasks designed to test the functionality of our system. He was able to:

• Create a LUT from descriptive text. The participant noted that the model was intuitive, and the LUTs generated were
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remarkably accurate and visually pleasing.

• Leverage the Memory Color Enhancement Module to generate a variety of color outcomes. He praised the module’s
ability to accurately translate memory colors, making color enhancement a straightforward process.

• Utilize the Text-driven Color Mapper to determine color attributes from the descriptive text. He found the module
innovative and accurate in interpreting color attributes.

• Use the CFNet to preserve original color attributes while maintaining spatial consistency. He was impressed by the
module’s ability to retain original color attributes, observing that it significantly reduced time spent on manual color
grading.

6.3. Color Fusion via CFNet Evaluation Results

The participant conducted a thorough review of the performance of CFNet in terms of its visual performance, speed, and
ease of use.

• Visual Performance: The participant commended the CFNet’s ability to consistently generate visually pleasing re-
sults, even in challenging color scenarios.

• Speed: The participant noted the impressive speed of CFNet. The model was able to produce color fusion outcomes
rapidly, making real-time color grading feasible. CFNet’s efficiency was observed in its ability to preserve origi-
nal color attributes while maintaining spatial consistency, significantly reducing time spent on manual color grading.
The participant emphasized that CFNet’s speed was a significant advantage, especially for large-scale color grading
projects.

• Ease of Use: The participant appreciated the user-friendliness and intuitiveness of CFNet. The model was found to be
easy to work with, even for users with limited technical knowledge. CFNet’s ease of use was emphasized as a crucial
factor in its potential adoption in the color grading industry.

6.4. Conclusion

The results of the user study with an experienced colorist confirm the success and potential of our system. It delivers on its
promise of a revolutionary color fusion approach that is accurate, efficient, and user-friendly. We appreciate the constructive
feedback from our participant and will use his insights for further improvement and optimization of our system. The future
of color fusion certainly looks bright with our solution.

7. More Visual Examples
In this section, we present a series of visual examples that underscore the efficacy of CFNet in color fusion tasks. Through

these diverse examples, we highlight CFNet’s ability to adeptly address the shortcomings inherent in existing methods. No-
tably, while our main paper focused predominantly on comparisons with image harmonization and color transfer approaches,
here we further extend the analysis to encompass comparisons with image inpainting techniques. This extended evalua-
tion, previously not presented due to page constraints in the main paper, provides a more thorough assessment of CFNet’s
performance and reveals its wide-ranging applicability in the context of color fusion tasks.

7.1. Image Inpainting

Image inpainting refers to the process of reconstructing missing or corrupted areas within an image by borrowing in-
formation from surrounding regions. While this technique can be effective for image restoration, object removal, or image
completion, it exhibits several limitations when applied to color fusion.

Inpainting methods often result in altered texture in the filled areas, given their reliance on adjacent pixels, producing an
inconsistent and unnatural appearance. Furthermore, they may cause the loss of original context within the masked regions,
detracting from the overall image quality and fidelity. Even if we can post-processing the result image with original L channel
to preserve the image texture, it may introduce inconsistency between color and texture.

In contrast, CFNet is meticulously designed to circumvent these challenges. As the following visual examples demon-
strate, CFNet ensures the preservation of texture, accurate color blending, and the elimination of color deviations, resulting
in superior color fusion results.
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7.2. Single Object Color Fusion

Figure 6 shows the visual results in single object color fusion cases. We compared CFNet with harmonization methods:
Harmonizer [6] and S2CRNet [7], color transfer method: Color Matcher, and image inpainting method: CoordFill [8].
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Figure 6. Visual results of single object color fusion cases, comparing CFNet with Harmonizer [6], S2CRNet [7], Color Matcher [5] and
CoordFill [8]. For each set of four rows, the first row presents the input image, panoptic segmentation result, its corresponding edge region
and direct composition result produced by single object color enhancements. The second row shows the result images generated by the
respective methods. The third row presents the difference maps between the results and direct composition images, highlighting the color
discrepancies. The fourth row offers zoomed-in views of the corresponding regions, providing a closer look at the details. The W1 distance
between each method’s result and the direct composition is also included, where smaller values indicate a closer color distribution to the
direct composition.

7.3. Multi-object Color Fusion

CFNet can also perform color fusion for multiple objects, while existing methods such as image harmonization and color
transfer encounter difficulties in such setting. Figure 7 illustrates the remarkable capacity of CFNet to handle complex
multi-object color fusion tasks, paving the way for more versatile and visually pleasing color blending.
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Figure 7. Visual comparisons of multi-object color fusion results obtained by Harmonizer [6], Color Matcher [5], CoordFill [8] and our
method. Each quartet of rows follows a similar structure to Figure 6, displaying the original input, the result images, difference maps, and
zoomed-in regions, along with W1 distances for color similarity evaluation.

7.4. Limitation and Failure Cases

As shown in Figure 8, CFNet faces challenges with transparent areas due to inherent complexities and potential training
data gaps. Despite producing generally acceptable results, there are color inconsistencies. In addition, as shown in robustness
evaluation, if the ratio of colors to be predicted is too high, CFNet’s ability of color inpainting is limited. Future endeavors
will emphasize dataset diversity, especially transparency, and algorithm refinements.

Failure Cases

Input Direct 
Composition Our ResultObject Mask

Figure 8. Failure cases. CFNet’s output illustrates color discrepancies within transparent regions.
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